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Abstract—Multimodal learning is widely used in automated early diagnosis of Alzheimer’s disease. However, the current studies are

based on an assumption that different modalities can provide more complementary information to help classify the samples from

the public dataset Alzheimer’s Disease Neuroimaging Initiative (ADNI). In addition, the combination of modalities and different tasks

are external factors that affect the performance of multimodal learning. Above all, we summrise three main problems in the early

diagnosis of Alzheimer’s disease: (i) unimodal vs multimodal; (ii) different combinations of modalities; (iii) classification of different

tasks. In this paper, to experimentally verify these three problems, a novel and reproducible multi-classification framework for

Alzheimer’s disease early automatic diagnosis is proposed to evaluate and verify the above issues. The multi-classification framework

contains four layers, two types of feature representation methods, and two types of models to verify these three issues. At the same

time, our framework is extensible, that is, it is compatible with new modalities generated by new technologies. Following that, a series of

experiments based on the ADNI-1 dataset are conducted and some possible explanations for the early diagnosis of Alzheimer’s

disease are obtained through multimodal learning. Experimental results show that SNP has the highest accuracy rate of 57.09% in the

early diagnosis of Alzheimer’s disease. In the modality combination, the addition of Single Nucleotide Polymorphism modality improves

the multi-modal machine learning performance by 3% to 7%. Furthermore, we analyse and discuss the most related Region of Interest

and Single Nucleotide Polymorphism features of different modalities.

Index Terms—Multi-modal learning, multi-modality data, alzheimer’s disease

Ç

1 INTRODUCTION

ALZHEIMERS’S disease (AD) is an irreversible neurodegen-
erative disease that slowly destroys memory and think-

ing abilities. According to the report from the World Health
Organization (WHO) in December 2020, AD and other

forms of dementia are one of the top ten causes of death in
the world [1]. AD is the most common dementia (approxi-
mately 60% to 70%), and its cause is still unknown. Cur-
rently, there are no treatments for AD that can prevent or
reverse the course of the disease, and only a few that can
temporarily relieve or improve symptoms. The latest survey
report of the Alzheimer’s Association in 2021, by 2050, it is
estimated that 12.7 million people aged 65 and over will
have AD [2].

The increase in the number of AD patients and deaths is
highly valued by governments all over the world. Due to the
different early diagnosis methods and equipment for AD,
different forms and manifestations of data have been gener-
ated, such as cerebrospinal fluid (CSF), Positron Emission
Computed Tomography (PET), Magnetic Resonance Imag-
ing (MRI), Single Nucleotide Polymorphism (SNP), Electro-
cardiography (ECG), Electroencephalography (EEG) and so
on. This data, which comes from several different devices or
contains many different manifestations can be defined as
multimodal data [3], as shown in Fig. 1. From Fig. 1, it can be
seen in the course of early diagnosis of AD, will produce
multimodal medical data. However, we rely on human or
clinic knowledge to identify biomarkers in these data for
early diagnosis. In general, it is a kind of manual diagnosis
using multiple modalities. Based on the doctor’s diagnosis
method and the five main multimodal biomarkers shown in
Fig. 1, these two points have become the basis for researchers
to build an automated system for the early diagnosis of AD.
Currently, machine learning technology has been widely
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used in the medical and health field[4], [5], [6], such as
COVID-19MRI reading, COVID-19 host prediction [7], Fore-
cast of the development of COVID-19 [8] and early detection
of AD and so on. In the early diagnosis of AD, many studies
have been devoted to understanding the underlying biologi-
cal or physiological mechanisms of AD.

Some research works [9], [10], [11], [12], [13], [14] have
made unimodal analyses based on single-factor pathogene-
sis of AD [14], [15]. Others have conducted multimodal
analyses based on multi-factor pathogenesis of AD [9],
[12], [13], [16]. A large number of studies have used the
public dataset Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [17] to study the pathogenesis of AD based on
Multi-modal Learning (MML), and explore the effects of
mutations in brain lesions and gene fragments on AD [9],
[12], [13], [18], [19].

However, a certain limitation of these methods is that
they did not analyze in depth the feasibility of multimodal
techniques in the early diagnosis of AD. According to previ-
ous studies [9], [12], [13], [18], [19], [20], we summarise that
there are four problems in the application of MML in the
early diagnosis and treatment of AD. 1) Unimodal vs multi-
modal (Explore the generalization ability of MML and tradi-
tional machine learning for early AD classification); 2)
Different combination of modalities (Investigate the influence
of the combination of modalities on the generalization abil-
ity of MML); 3) Classification on different tasks (Investigate the
influence of the different tasks on the generalization ability
of MML); 4) Most related ROIs and SNP features (Explore the
features of the medical explanation).

To better explain and promote the reliability and effec-
tiveness of MML in early AD diagnosis, these four issues
need to be explained reasonably. The primary difficulty of
this work is to adopt a unified framework to build an auto-
mated diagnosis system and to verify the four problems of
MML in the early diagnosis of AD. It is difficult to obtain
samples in the medical field. What is more difficult is to
obtain samples with complete modalities. These factors

severely limited the development of multimodal learning.
In the early diagnosis of AD, the data quality was very low
due to the use of different data processing techniques and
standards. Incompleteness of modality is also a common
problem. Our team spent a year manually processing and
selecting the four modalities data on ADNI-1, and finally
got 402 samples with complete modalities (MRI, PET, and
SNP). Then, the choice of machine learning algorithms and
the reproducibility of experimental results are other major
difficulties. Different machine learning algorithms, parame-
ters, and experimental setups greatly influence on the early
diagnosis of AD and are related to the reproducibility of the
automatic classification results. Finally, most researchers
have only focused on the model’s generalization ability but
ignored these points.

In contrast to other previous work, our work is an impor-
tant step in objectively evaluating the performance ofMML in
the task of AD diagnosis. We used the same benchmark data-
set ADNI to perform detailed tests of the performance of
MML in the early diagnosis of AD. At the same time, MML
onAD,modal combination, number of tasks, modal contribu-
tion, and interpretable medical features were discussed.
These can help researchers better designADdiagnosis experi-
ments and understand theworkingmechanism ofMML.

Data in the medical field is very scarce and precious.
Existing studies of MML are based on an assumption that
utilizing rich and completed modalities will improve the
diagnosis performance of machine learning models. But the
assumption of valid conditions is difficult to satisfy in prac-
tical situations, because although the improvement of the
quality and quantity of multimodal data can improve the
performance of machine learning models, in practical situa-
tions multimodal data always contain missing data or
incomplete modal. Although Fig. 1 contains five main bio-
markers, according to the previous research [9], [12], [13],
[21], [22], researchers were more committed to fusing MRI,
PET image data and SNP sequence data to build MML algo-
rithms. To supplement and improve the application basis of
MML in AD, we conducted detailed and precise experi-
ments to fully and fairly verify the prior knowledge. Our
team spent a year collecting valid data (MRI, PET and SNP)
from 819 patients in ADNI-1, and using a unified data proc-
essing method for data preprocessing. After our manual
selection, 402 patients with MRI, PET and SNP data (com-
plete modalities) were selected for the experiment.

The purpose of the experiment is to verify the generaliza-
tion ability of the model and reflect the general performance
of most models in early AD diagnosis with guaranteed
reproducibility, so there is no excessive adjustment of
parameters. In this work, we present a framework for the
reproducible assessment of MML in patients with AD and
show its application in the classification task of PET, MRI,
and SNP data. All the experimental results are tested under
the data of 402 patients. Finally, we use feature selection
algorithms and extraction methods to medically verify the
selected features to prove that the features of the extracted
band of machine learning are medically interpretable. Spe-
cifically, our contribution has four aspects:

� In 402ADpatients,MRI, PET, and SNPdata of ADNI-
1 were collected to validate that multimodal machine

Fig. 1. AD patients produce different modal data in the hospital’s diagno-
sis process. At present, MRI and PETare the main modalities.
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learning outperforms traditional machine learning
algorithms in early AD diagnosis. The experimental
results show that multimodal machine learning can
improve the generalization ability of the model by
using complementary information.

� Through the analysis and testing of different modali-
ties, it is found that each modality has different influ-
ences on the early diagnosis of AD. The experimental
results show that different modalities contribute dif-
ferently to the diagnosis of diseases. And perform
medical validation on the features obtained by
machine learning, analyze the consistency of these
features and their importance in the medical field.

� As the number of modalities changes from unimo-
dal to bimodal, and then to trimodal, the generali-
zation ability of its multimodal algorithm gradually
improves.

This work helps researchers to prove the effectiveness of
MML in the field of smart medicine from an experimental
perspective.

The rest of this paper is organized as follows. Section 2
described the materials used in this study and presented
the data preprocessing steps. Section 3 explained the pro-
cess of general multimodal learning in early disease diagno-
sis and the processing details. In Section 4, we further
displayed the experimental setup and demonstrated the
detailed experimental results to verify our motivation. The
discussion and conclusion of this paper are in Section 5.

2 MATERIALS AND DATA PREPROCESSING

ADNI continues to develop and standardize biomarker
methods and provides qualified researchers with more
depth and breadth of data. ADNI was established in 2005
and is a natural longitudinal study aimed at developing and
verifying biomarkers for the selection of research subjects
and as an alternative outcome measure for clinical trials of
AD modification therapies. The initial 5-year study, known
as ADNI-1, enrolled 819 participants from 56 study sites. The
primary purpose of ADNI is to investigate the potential of
fusing multimodal data, including neuroimaging, clinical,
biological, and genetic biomarkers to diagnose AD at the
early stage.We use data from the ADNI-1 database to verify
fourmain issues in themultimodalmedical field.

2.1 Studied Subjects

In the baseline ADNI-1 dataset, there are 819 patients’ data,
some of whom have incomplete modalities, such as PET
data. In order to ensure that the data of each modality are
complete, 402 patients with data on the three full modalities
(MRI, PET and SNP) were selected from 809 patient data.

Among 402 patients, there are 102 Normal Control (NC)
patients, 203 Mild Cognitive Impairment (MCI) patients
and 97 AD patients. MCI can be divided into stable Mild
Cognitive Impairment (sMCI) and progressive Mild Cogni-
tive Impairment (pMCI) according to whether the disease
progresses to AD within a certain period of time (usually 36
months) [7]. Among them, sMCI means that MCI patients
have not transformed into AD patients within a certain
period, and pMCI means that MCI patients have trans-
formed into AD patients within a certain period. In this
study, there are 95 sMCI patients and 108 pMCI patients.
Table 1 shows the demographic information and cognition
scales of the subjects. ADNI uses different data processing
methods, which leads to differences between the data.

2.2 Data Preprocessing

The 1.5T MRI baseline of ADNI-1 database are selected.
According to the patient’s ID, the corresponding PET and
SNP are selected. In order to improve the quality of the
data, MRI, PET and SNP data were processed separately.
We use SPM12 to segment MRI into white matter (WM),
gray matter (GM) and cerebrospinal fluid (CSF), and extract
the voxel features from 142 Region of Interests (ROIs) based
on Neuromorphometrics-template. Neuromorphometrics
-template is an anatomical atlas based on multiple disci-
plines. It was established by manual tracking of anatomical
MRI of 30 healthy subjects. Hence, each issue was registered
in the Montreal Neurological Institute (MNI) space to gener-
ate the maximum probability map.

Next, for each subject, we first aligned PET images to
their corresponding T1 MRI using affine registration and
then computed the average PET Standard Uptake Value
(SUV) [17] of each brain area as a feature representation.
SUV is a dimensionless ratio that has historically been used
by nuclear medicine professionals to distinguish between
”normal” and ”abnormal” levels of uptake [17]. The SUV
features we extracted from PET are of the same dimension
of 142 as the MRI voxel feature. Specifically, the PET is proc-
essed under the following steps (as shown in Fig. 2):

TABLE 1
Participants’ Demographic Information and Cognitive Scale (MMSE: Mini-Mental State Examination; CDR-SB:

Clinical Dementia Rating-Sum of Boxes)

Group Female/Male Education Age MMSE CDR-SB

NC 40/62 15.84 � 3.13 75.84 � 4.80 28.94 � 1.11 0.039 � 0.134
sMCI 27/68 15.60 � 3.01 75.11 � 7.33 27.35 � 1.67 1.411 � 0.778
pMCI 39/69 15.89 � 2.71 74.72 � 6.99 27.04 � 1.69 1.634 � 0.795
AD 39/58 14.65 � 3.20 75.57 � 7.28 23.47 � 2.13 4.557 � 1.650

Fig. 2. MRI & PET feature extraction process.

NAN ETAL.: MULTI-CLASSIFICATION ACCESSMENT FRAMEWORK FOR REPRODUCIBLE EVALUATION OF MULTIMODAL LEARNING IN... 561

Authorized licensed use limited to: Univ of Calif San Francisco. Downloaded on August 27,2024 at 05:46:42 UTC from IEEE Xplore.  Restrictions apply. 



1) Adjusting the PET position to anterior commissure-
posterior commissure (AC-PC) correction;

2) Segmenting MRI T1 brain region to obtain the seg-
mented deformation field;

3) Using the deformation field, Neuromorphometrics-
template and MRI are used for standard space
registration;

4) Matching the number of PET images per patient
to the number of Neuromorphometrics-template
layers;

5) Converting PET density information into SUV.
SNP is provided by ADNI and used as a genetic pathway

in this study, which can provide us with microscopic infor-
mation of AD. SNP samples were genotyped by using the
Illumina Human610-Quad BeadChip and intensity data
was processed with GenomeStudio v2.0 [18]. GenomeStudio
software generates plots of all SNPs for B allele frequency
(interpolated from known B allele frequencies of the
three canonical clusters: 0, 0.5, and 1) and log R ratio
(log2ðRobserved=RexpectedÞ), where Rexpected is interpolated from
the observed allelic ratio concerning to the canonical geno-
type clusters 3, 4, 5 [19]. Finally, 402 patients with 620,901
SNPs were obtained. Due to the high dimensionality of the
SNP data, which exceeds 620,901 dimensions, feature
extraction methods or dimensionality reduction methods
cannot be used directly, which would lead to a serious deg-
radation in the performance and efficiency of the algorithm.
To avoid this problem, we divided the 620,901 - dimen-
sional SNP data into 10 groups, selecting the top 100 dimen-
sions of significant features for each group, and then
merging the extracted features to obtain 1000 - dimensional
features. The flow chart of our grouped feature extraction is
shown in Fig. 3. We used two feature extraction algorithms
(random forest regression, logistic regression) for the SNP
data, and finally combined the extracted features to obtain
the 1000-dimensional features.

2.3 Multi-Modal Learning

In this work, we mainly investigated two mainstream multi-
modal learningmodelingmethods [3], [23], [24]: Feature-based
algorithms and Modal-based algorithms. Feature-based algo-
rithms combine the features of heterogeneous data to realize
the integration of different information. In the early feature-
based fusion combined the different modal features were

combined horizontally. The high-dimensional features after
stitching adopt feature selection or dimensionality reductions
[3], [25]. This approach reduces the efficiency of algorithms
and less effective filtering of redundant information. Research-
ers were committed to exploring new representation methods.
Latent space representation is currently the mainstream
method of multi-modal feature fusion. This type of method
seeks to find a latent representation to fuse differentmodalities
[9], [18], [26].

Modal-based algorithms are another modeling strategy
that explicitly solves the fusion problem in model construc-
tion — such as kernel-based methods [16], neural networks
[3]. Liu et al. [16] used Multiple Kernel Learning (MKL) for
multimodal fusion in AD classification. Neural networks
have become very popular for multimodal fusion [16]. Using
a neural network to build a multi-modal representation,
each modality starts from several separate neural layers and
then projected onto different modalities spatial representa-
tion of the potential hidden layer. In this section, we used
latent space representation and neural networks to construct
an automated diagnosis system for early AD diagnosis.

3 FRAMEWORK AND APPLICATION

The construction of MML automatic diagnosis system or
model is currently a hot research topic in the medical field
[7], [10], [12], [13], [15], [16]. In order to better improve and
enrich the basic work of multimodal learning in the medi-
cal field, we verified the aformentioned four points of
work by constructing a multi-modal diagnosis and treat-
ment framework.

3.1 Multi-Classification Framework

The multi-classification framework aims to explore effective
modality combinations and the performance ofmulti-modal-
ity methods in early AD diagnosis. The strategy is designed
by using a feature representation, traditional machine learn-
ing, MML and experimental analysis approaches. The multi-
classification framework is presented as a 4-layers structure
as shown in Fig. 4.

Integration Level: to collect the heterogeneous data from
the different platform, we divided the currently collected
data into three modalities: 1) structured modalities; 2)
sequential modalities; 3) image modalities. Structured
modalities mainly include MMSE, CDR-SB, Electronic Med-
ical Record (EMR), etc. These data are of low dimensionality
and often contain many missing data. Sequential data
mainly includes EEG, ECG, SNP, etc. The dimensionality of
these data is high. Image data mainly includes MRI, PET,
CT, etc. These data are often expressed in the form of 2D or
3D images. In this paper, we fused sequence modalities
(SNP) and image modalities (MRI and PET). For structured
modalities, because of their low dimensionality, a common
approach is to splice them directly. At present, most of the
data in this experiment was obtained from ADNI. Since the
ADNI database currently focuses on European human brain
research, another current work of our team is to collect
Asian human brain data. The collected Asian brain data
includes MRI and PET, and a multi-modal data platform is
being developed for sharing Asian brain data.

Fig. 3. Grouped dimensionality reduction and weighted fusion for high-
dimensional SNP data. Where S represents how many groups are
divided into, and N represents the top N features in each group.
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Methodology Level: to represent the features of different
modalities and build models. This layer mainly includes
feature representation and algorithm application. At the
feature representation level, different modalities are proc-
essed by different feature representations. The details of
the feature representation method are described in Chap-
ter 2. In the algorithm application layer, the traditional
machine learning algorithm and MML algorithm are con-
sidered. In the choice of traditional machine learning
algorithms, we introduced SVM, ensemble learning and
neural networks as the main algorithms for the experi-
ment. For the multi-modal learning methods, which are
divided into two types: model-based methods and fea-
ture-based methods. Model-based methods include Multi-
ple Kernel Learning (MKL), Multi-Task Learning (MTL),
etc. Feature-based methods include Sparse learning (SL),
Principal Component Analysis (PCA), Canonical Correla-
tional Analysis (CCA), Kernel Canonical Correlation
Analysis (KCCA), Deep Canonical Correlation Analysis
(DCCA). Please see Section 3.2 for the details of the
selected algorithm.

Knowledge Level: To summarize the output of the method
level to obtain two parts of knowledge: 1) Alzheimer’s

related knowledge, including diagnostic results, interpret-
able medical features, etc. 2) Multimodal learning related
knowledge, including modal combination forms, different
classification tasks, etc.

Application Level: The rules and conditions obtained at the
knowledge level can be applied to actual AD diagnosis and
treatment, or new drug development. Specifically, to build
an automated AD early diagnosis system, We can introduce
some a priori knowledge, such as reasonable forms of
modal combinations, valid special expressions, etc. To sim-
plify and help the construction of the system.

Meanwhile, the purpose of the multi-classification frame-
work is to discover some rules and factors and improve the
current multi-modal automatic diagnosis system for AD by
introducing prior knowledge and verifying the generaliza-
tion performance of ML algorithms and MML algorithms
while ensuring repeatability. We explained the knowledge
level (Section 3.1) from two perspectives: AD diagnosis and
Multi-Modal Learning respectively.

Unimodal Versus Multimodal: To evaluate the performance
and effectiveness of MML in the early diagnosis of AD.
Through a large number of experiments, we compared the
performance of traditional machine learning algorithms

Fig. 4. Multi-classification framework for early diagnosis of AD.
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and multi-modal learning and verified the generalization
ability of different multi-modal learning methods in early
AD diagnosis.

Different Combination of Modality: To explore what kind of
modal combination has the best performance of the model
trained on early AD diagnosis, in the three modalities of
MRI, PET and SNP. The combination of modalities is shown
in Fig. 5. We also explored the relationship between the
number of modalities and the performance of multi-modal
learning. Last, we provided prior knowledge to avoid prob-
lems caused by modal selection.

Classification on Different Tasks: To explore the relation-
ship between various classification tasks and multimodal
learning performance, and find the best performing modal
combination on the three classification tasks. This helps to
improve the efficiency and accuracy of constructing a multi-
modal learning automated diagnosis of AD. As shown in
Table 2, depicts the division of the three different tasks and
the number of patients.

3.2 Classification Model

We describe the methods used by the knowledge layer,
including 9 traditional machine learning algorithms and 9
multi-modal learning algorithms. Specifically, for traditional
unimodal machine learning methods, we selected: k-Nearest
Neighbor (k-NN), Support VectorMachine (SVM),Multilayer
Perceptron (MLP), Decision Tree (DT), Random Forest (RF),
Adaptive Boosting (AdaBoost), Extreme Gradient Boosting
(XGBoost), Neural Networks (NNs), and Convolutional

neural network (CNN). For multimodal learning methods,
we selected: a representative Sparse Learning (SL) [27] algo-
rithm: L2;1-norm regularization [28], Principal Component
Analysis (PCA), Canonical Correlation Analysis (CCA) [16],
Kernel Canonical Correlation Analysis (KCCA) [21], Multi-
View Multidimensional Scaling (MVMDS) [29], Multi-task
learning (MTL), Co-regularizedMulti-view Spectral Cluster-
ing (CMSC) [30], and Deep Semi-NMF for Multi-view Clus-
tering (DMF-MVC) [31]. it is worth noting that MVMDS
method expands the application scenarios of Multidimen-
sional Scaling (MDS) (from unimodal to multimodal).
This method can adaptively select discriminative views
and enhance the contribution of information views. CMSC
adopts the co-regularization method to constract a cluster
representation for multimodal data. In the experiment, we
used CMSC to represent multimodal data, and then trained
a SVM model. DMF-MVC utilises a deep structure through
semi-nonnegativematrix factorization to seek a common fea-
ture representation.

4 EXPERIMENTS

In this section, we first introduced nine traditional machine
learning algorithms and nine MML methods. Next, the
parameter settings of each algorithm are demonstrated. The
parameters of all the algorithms in the experiments are
determined by grid search, which is an exhaustive search of

Fig. 5. The three modality combinations are formed by different combi-
nations, and the two combinations have three forms, which are
expressed as MRI & PET, MRI & PETand PET & SNP; the three modal-
ity combinations have one form, which is expressed as MRI & PET &
SNP.

TABLE 2
Description of the Dvision of Three Different Tasks and the

Number of Patients

Tasks Group Number of subjects

2 classification tasks sMCI 95
pMCI 108

3 classification tasks NC 102
MCI 203
AD 97

4 classification tasks NC 102
sMCI 95
pMCI 108
AD 97

TABLE 3
The Parameters of Traditional Machine Learning Algorithms and

Their Parameter Value Ranges

Tasks Group Number of subjects

SVM Kernel [RBF, Linear]
Penalty C [1, 10 100,1000]
Gamma [1e-1,1e-2,1e-3, 1e-4]

NNs Hidden layers 3
Learning rate 0.001
Loop 10000

Adaboost N estimators [10,30,50,100]
Learning rate [0.1,0.01]

XGboost Learning rate [0.1,0.01]
N estimators [10,100]
Gamma [1e-2, 1e-3]

KNN Weights [uniform, distance]
N neighbors [1, 2, 3, 4, 5, 6]
Distance [1, 2, 3, 4, 5, 6]

DT Criterion [gini, entropy]
Max depth [10, 20]
Min samples split [2, 4]
Min samples leaf [3, 4]

CNN Dropout 0.5
Conv1D 10*6
Activation Relu

MLP Learning rate 0.1
Max iteration [5,10,15]
Early stopping True

RF Max depth [1,3,5]
N estimators [10,20,30]
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all the parameters in steps to obtain the best ones. Finally,
we presented the Accuracy (ACC), Area Under Curve
(AUC), average and standard deviation of each experiment.
For the calculation of AUC, we chose the python roc_auc_so-
cre function to calculate macro-AUC, the index of each label,
and unweighted average.

4.1 Experimental Setup

We used a tenfold cross-validation strategy to evaluate all the
approaches and the final results were obtained by averaging
the ten repetition results. In order to verify our conjecture, we
conducted a detailed and complete experimental verification
on the ADNI-1 dataset. The parameter settings of the algo-
rithm we selected are shown in Table 3. We chose ACC and
AUC as our evaluation matrix. ACC is the evaluation stan-
dard used by most machine learning algorithms or deep
learning algorithms, and is an important indicator to measure
the quality of an algorithm. AUC compute area under the
receiver operating characteristic curve from prediction scores.

4.2 Classification Results Using Unimodal and
Multimodal Data

Tables 4 and 5 show the performance of 9 traditional algo-
rithms on the three classification tasks (AD/MCI/NC) of
MRI, PET and SNP, respectively. It can be clearly seen that
on the MRI classification task, the NNs algorithm achieved
the best performance, with ACC of 53.25% and AUC of
75.71%; on the PET classification task, the Adaboost algo-
rithm achieved the best performance with ACC of 51.73%,
AUC is 69.27%; on the SNP classification task, the MLP algo-
rithm achieved the best performance, with ACC of 68.39%
and AUC of 83.85%. As shown in Figs. 6 and 7, in order to
compare the performance of traditional algorithm classifica-
tion on unimodal and multi-modal more intuitively, we
averaged the performance of 9 traditional machine learning
algorithms and obtained their averages ACC and AUC on
MRI, PET and SNP respectively. Then, the average perfor-
mance of the 9 classifiers is used as the baseline to compare
with the MML algorithm. Figs. 6 and 7 also reveal that each
modality has a different degree of influence on the decision-

TABLE 4
ACC of Classifiers on Different Unimodal of NC/MCI/AD Classification Tasks (MEAN�STD)

Algorithm SVM Adaboost KNN RF DT MLP XGboost NNs CNN

MRI 48.01�6.70 50.24�4.70 44.30�7.27 50.48�5.86 49.76�4.26 49.43�6.69 52.74�5.64 53.25 �8.80 49.44�2.52
PET 51.49�4.60 51.73�4.57 42.27�5.16 50.24�5.20 50.48�5.86 49.62�6.51 43.79�6.65 50.05�3.08 47.12�3.28
SNP 55.50�3.16 68.12�6.94 48.99�8.30 50.49�5.82 49.24�4.00 68.39�4.37 54.15�7.00 55.16�6.86 50.48�2.30

TABLE 5
AUC of Classifiers on Different Unimodal of NC/MCI/AD Classification Tasks (MEAN�STD)

Algorithm SVM Adaboost KNN RF DT MLP XGboost NNs CNN

MRI 70.30�6.27 74.17�7.08 64.12�6.92 70.20�5.18 53.55�4.71 67.42�7.02 68.97�4.60 75.71�9.31 63.85�2.36
PET 69.62�3.51 69.27�3.85 53.63�3.76 62.25�7.15 61.19�2.83 68.28�5.19 61.61�5.73 54.36�6.88 60.63�3.08
SNP 84.09�5.02 82.06�5.96 62.98�7.99 67.59�6.73 58.55�-4.85 83.85�4.20 73.53�6.35 63.84�11.20 58.88�2.27

Fig. 6. Average ACC of nine traditional machine learning algorithms in
unimodal.

Fig. 7. Average AUC of nine traditional machine learning algorithms in
unimodal.
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making results. In other words, there are differences in their
contribution to the classification results.

Figs. 8a, 8b, and 8c shows the ACC of traditional machine
learning algorithms on unimodal and the ACC of MML
algorithms on multi-modal. Figs. 9a, 9b, and 9c provides the
AUC of traditional machine learning algorithms on unimo-
dal and the AUC of MML algorithms on multimodal. From
Figs. 8 and 9, we have the following observations. First,
from Fig. 8a, compared with MRI-average and PET-average,
we can find that among the selected nine MML algorithms,
the ACC of CCA KCCA, PCA and MVMDS algorithms are
significantly higher than MRI-average and the ACC of
CCA, KCCA, PCA, DMF-MVS, MVMDS, and MTL is signif-
icantly higher than PET-average. From Fig. 8b, compared
with MRI-average and SNP-average, CCA, KCCA, PCA,
L2,1, MVMDS and CMSC algorithms have higher ACC than
MRI-average, and CCA, KCCA, PCA, L2,1 and MVMDS
algorithms have higher ACC than SNP-average. From
Fig. 8c, compared with PET-average and SNP-average, it is
apparent that CCA, KCCA, PCA, L2,1, MVMDS and CMSC
algorithms have higher accuracy than PET-average, and
CCA, KCCA, PCA, L2,1 and MVMDS algorithms have
higher accuracy than SNP-average. After the analysis in
Figs. 8a, 8b, and 8c, it can be concluded that among the 9
compared MML algorithms, at least 5 MML algorithms are
better than MRI-average, PET-average and SNP-average
under different modal combinations. From the experimental
results of AUC as shown in Figs. 9a-9c, We got similar
results as in the ACC experiments. At the same time, Figs. 8

and 9 demonstrate the feasibility and effectiveness of MML
in the early diagnosis of Alzheimer’s disease.

Figs. 10 and 11 compare the classification ACC and AUC
performance are achieved by different algorithms using dif-
ferent modal combinations. CCA is a linear combination of
different modalities, while KCCA and DCCA are a nonlin-
ear combination different modalities. An inspection of
experimental results of the performance of CCA, KCCA

Fig. 8. Classification ACC achieved by different methods using the different modality combinations. And the error bar denotes the standard deviation
of the results

Fig. 9. Classification AUC achieved by different methods using the different modality combinations. And the error bar denotes the standard deviation
of the results

Fig. 10. Classification ACC achieved by different methods using the dif-
ferent modality combinations. Where the error bar denotes the standard
deviation of the results.
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and DCCA reveals that the generalization ability of the CCA
algorithm is better than that of KCCA and DCCA. This
shows to a certain extent that the linear combination is bet-
ter than the non-linear combination for the early diagnosis
AD. Furthermore, as a typical sparse learning algorithm,
the L2;1-norm regularization algorithm solves the problem
of high-dimensional data through sparse learning of multi-
modal data of MRI, PET and SNP, and its classification per-
formance ranks among the nine MML algorithms. MVMDS
and CMSC are two representation learning methods, which
have poor performance on the classification of AD. DMF-
MVC is a matrix factorization method, and the model per-
formance is not good. MTL trains a classifier on each modal
and then uses shared parameters or shared features to diag-
nose early AD. The experimental results show that MTL is
helpful in providing complementary information to help
other tasks classify.

In summary, in the early AD diagnosis, the fusion of
multimodal data helps to improve the generalization perfor-
mance of the classifier. This is mainly because different
modalities can provide complementary information about
different modalities for AD disease diagnosis, which helps
the model to diagnose AD more comprehensively. in

addition, not all MML algorithms help in AD diagnosis,
such as DCCA and DMF-MVC. these MML algorithms per-
form very poorly in early AD diagnosis, even worse than
traditional machine learning algorithms.

4.3 Classification Results Using Different
Combination of Modalities

In all the samples that we collected, we have four different
combinations of the modalities (i.e., MRI & PET,MRI & SNP,
PET & SNP, MRI & PET & SNP). These four combinations
are divided into two groups, one containing two modalities
of data (i.e., MRI & PET, MRI & SNP, PET & SNP), and the
other containing three modalities of data (i.e., MRI & PET &
SNP). In the experiment, we still used the three classification
tasks (AD versus MCI versus NC) to carry out the experi-
mental evaluation of the combinations of different modali-
ties. Meanwhile, the ACC, AUC and standard deviation of
themodel were recorded.

In Section 4.2, we show the first combination pattern,
including MRI & EPT, MRI & SNP, and SNP & PET. From
Figs. 8 and 9, it can be observed that the ACC and AUC of
the algorithms vary greatly depending on different combina-
tions of modals. Specifically, the ACC and AUC of MRI &
SNP and PET & SNP tend to be higher than that of MRI &
PET. This indicates that the complementary information pro-
vided by SNP is more abundant than that provided by MRI
and PET, which is more conducive to training a model with
strong generalization ability. Further analysis shows that the
combination of different modalities has different effects on
the MML algorithms. For example, by comparing Figs. 8a
and 8b, the classification ACC of MRI & SNP for the early
AD diagnosis is higher than that of MRI & PET. One possible
explanation is that MRI and PET features are extracted from
the same ROI in the brain, and the extracted features are vox-
els and SUV. There is a relationship between voxel features
and SUV features, resulting in less complementary informa-
tion provided to each other than SNP.

Figs. 12 and 13 show the performance of average-MRI &
PET, average-MRI & SNP and average-PET & SNP and the
MML algorithms on three modalities (MEI, PET and SNP).
By comparing the different combinations of the two modali-
ties with the variety of the three modalities, we can observe
that the algorithm performance of CCA, KCCA, PCA, and
L2;1 has been greatly improved, far exceeding other MML

Fig. 11. Classification AUC achieved by different methods using the dif-
ferent modality combinations. Where the error bar denotes the standard
deviation of the results.

Fig. 12. The average classification ACC achieved by different algorithms using different modality combinations. The error bar denotes the standard
deviation of the results
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algorithms in the earlyADdiagnosis. At the same time, it can
also be explained that adding a modality helps to improve
the generalization ability of someMML algorithms.

Figs. 12 and 13 show the average ACC and AUC for dif-
ferent modality combinations. As can be seen from Figs. 12a
, 12b, and 12c, different modality combinations have a great
impact on the performance of the model with great differen-
ces. As shown in Figs. 12a, 12b, 13a, and 13b, compared with
MRI and PET, the model performance was greatly
improved after the introduction of SNP. However, com-
pared with SNP, the performance of the model was not

significantly improved after introducing of MRI and PET.
This also suggests that, in the case of limited computing
resources, reducing some modalities will not greatly affect
the classifier’s performance, but will improve the efficiency.

In the early diagnosis of AD, MRI, PET and SNP were
extracted using the feature extraction method, and it was
found that SNP contributed the most to the diagnosis of
AD. In addition, it provides the most complementary infor-
mation for other modalities and has significantly improved
performance compared with the traditional classifier
trained in single-modality.

Fig. 13. The average classification AUC achieved by different algorithms using different modality combinations. The error bar denotes the standard
deviation of the results

Fig. 14. The average classification ACC achieved by different algorithms on different task,when only one modality (MRI/PET/SNP) is included. The
error bar denotes the standard deviation of the results.

Fig. 15. The average classification AUC achieved by different algorithms on different task,when only one modality (MRI/PET/SNP) is included. The
error bar denotes the standard deviation of the results.
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4.4 Classification Results on Different Tasks

We conducted experiments to explore the impact of differ-
ent tasks on the early diagnosis of AD and to find the best
combination of modalities. First, we tested the performance
of traditional machine learning algorithms for classifying
unimodal data. Second, we evaluated the performance of
the multimodal learning algorithm on different learning
tasks.

Figs. 14 and 15 displays the ACC and AUC for different
traditional machine algorithms for classification of different
unimodal data, respectively. In terms of unimodal, we
found that traditional machine learning algorithms perform
better in SNP than MRI and PET modalities under different
classification tasks. Also, we found that for early AD diag-
nosis of unimodal data, the SVM, Adaboost and NNs algo-
rithms performed better than the other algorithms.
Comparing Figs. 14 and 15, we can see that the AUCs for
the same tasks are roughly the same as their ACCs when
using different unimodal data.

Figs. 16 and 17 show the performance of different classifi-
cation tasks and different multi-modal algorithms on pair-
wise combination of multi-modal data (MRI & PET, MRI &
SNP and MRI & PET). Among the different classification
tasks, two classifications (sMCI/pMCI) gives the best
results, followed by three classification tasks (AD/MCI/
NC), while four classification tasks give the worst results
(AD/pMCI/sMCI/NC). A possible explanation for this
might be that reducing the number of classification tasks

reduces the complexity and thus improves the algorithm’s
performance. Furthermore, by comparing the different
modal combinations in Fig. 18, we can see that MRI & SNP
perform better than the other two combinations. One possi-
ble explanation is that the SUV features of PET are classified
according to MRI brain regions. There are similarities

Fig. 16. The average classification ACC achieved by different algorithms on different task,when only two modalities (MRI & PET, MRI & SNP and PET
& SNP) are included. The error bar denotes the standard deviation of the results.

Fig. 17. The average classification AUC achieved by different algorithms on different task,when only two modalities (MRI & PET, MRI & SNP and PET
& SNP) are included. The error bar denotes the standard deviation of the results.

Fig. 18. The average classification ACC achieved by different algorithms
on different tasks when three modalities (MRI & PET & SNP) are
included. The error bar denotes the standard deviation of the results.
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between the two features, and the complementary informa-
tion provided is less than the SNP features. Last but not
least, by combining the performance of all the algorithms in
different classification tasks, we can see that CCA, KCCA
and PCA outperformed the others.

From another point of view, in the early diagnosis of AD,
there may be a linear relationship between the modalities.
Figs. 18 and 19 show the performance of different multi-
modal learning algorithms on different classification tasks
under the combination of the three modalities (MRI & PET
& SNP). We found an interesting phenomenon in the combi-
nation of three modalities. Considering the performance of
different classification tasks on different multi-modal learn-
ing, we found that the results of multi-modal learning algo-
rithms are very similar.

In summary, from Figs. 14, 15, 16, 17, 18, and 19, we have
verified and explained the performance of different classifi-
cation tasks through experiments. Specifically, considering
different classification tasks, SNP performs best in unimo-
dal multi-classification tasks; MRI & SNP modality per-
forms best in the multimodal multi-classfication tasks. This
reveals that SNP provides more useful information than
MRI and PET.

5 DISCUSSION AND CONCLUSION

In this section, we first demonstrated the top ten features of
MRI, PET and SNP. Hence, according to the previous
research [9], [32], [33], [34], [35], [36], [37], we compared the
selected features with the current ROIs and SNPs that may
cause AD. Then we described the current problems in the
early diagnosis of Alzheimer’s disease. Finally, we intro-
duced in detail some of our future research work and briefly
introduces.

Our experiments show that the top ten ROIs are associ-
ated with MRI and PET on different classification tasks. As
shown in Fig. 20, in the MRI modality, ROIs such as Left
Hippocampus, Right Hippocampus, Left Inferior Temporal Gyrus
and Right Inferior Temporal Gyrus has a strong correlation
with the diagnosis of early AD. This finding is consistent
with that of many previous studies and it shows that these
ROIs have a strong connection to the diagnosis of AD. For
PET modalities, as shown in Fig. 21, ROIs such as Left Infe-
rior Frontal Orbital Gyrus, Right Inferior Frontal Orbital Gyrus,
Left Posterior Cingulate Gyrus and Right Posterior Cingulate
Gyrus has a strong correlation to the early diagnosis of
Alzheimer’s disease. Again, these identified ROIs are con-
sistent with those reported in previous AD-related studies.
For SNP modality, we choose the top 1000 most relevant
features. rs164975, rs1120643 are the two most relevant fea-
tures in our feature extraction method and the early diagno-
sis of AD. This also shows that it is difficult to extract
effective features for high-dimensional gene sequences, and
this will also be a key research work for us in the future.

In this paper, we proposed a multi-classification frame-
work for evaluating the early diagnosis of Alzheimer’s dis-
ease. It contains a four-layer structure, from data input to
knowledge application. Under this framework, we con-
ducted research on multimodal learning and the early diag-
nosis of AD and made three contributions: First of all, our
experiments not only reflected the usefulness of the multi-
classification framework but also effectively verified the
three problems. Second, our experiments prove the effec-
tiveness of multimodal learning in the medical field that
multimodal data have more complementary information or
prior knowledge than single-modal data. Therefore, this
complementary information help train a machine learning
model with strong generalization ability. Third, with the
addition of different modal data, machine learning models
are becoming more and more capable of diagnosing dis-
eases. The three points are used as prior knowledge for
multi-modal learning in the medical field.

Fig. 19. The average classification AUC achieved by different algorithms
on different task when three modalities (MRI & PET & SNP) are
included. The error bar denotes the standard deviationof the results.

Fig. 20. Top ten selected ROIs for MRI modality in different classification
tasks. From top to bottom: pMCI/sMCI, AD/MCI/NC, and AD/sMCI/
pMCI/MC. Here, different colors denote different ROIs.

Fig. 21. Top ten selected ROIs for PETmodality in different classification
tasks. From top to bottom: pMCI/sMCI, AD/MCI/NC, and AD/sMCI/
pMCI/MC. Here, different colors denote different ROIs.
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